MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome
Journal Article

Proteome‐scale mapping of binding sites in the unstructured regions of the human proteome

2022
Request Book From Autostore and Choose the Collection Method
Overview
Specific protein–protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein–protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type‐specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide‐phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)‐binding domains and confirmed the quality of the produced data by complementary biophysical or cell‐based assays. Finally, we show how the amino acid resolution‐binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome‐wide discovery of SLiM‐based interactions. Synopsis An optimized phage peptidome that tiles the disordered regions of the human proteome is presented, allowing the field of motif‐based interactions to transition into high‐throughput. Guidelines and tools for data analysis are provided. An optimized second generation human disorderome (HD2) phage library tiles all disordered regions from the human proteome. Different peptide display parameters are tested, including display on the major or minor coat proteins of the M13 phage, and splitting the library design based sub‐cellular localization of the peptide containing proteins. PepTools is a dedicated toolkit to annotate peptides and to identify consensus motifs. > 2,000 motif‐based interactions are presented, together with information on potential disease mutations or phosphorylation sites that might affect the interactions. Graphical Abstract An optimized phage peptidome that tiles the disordered regions of the human proteome is presented, allowing the field of motif‐based interactions to transition into high‐throughput. Guidelines and tools for data analysis are provided.