MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth
Journal Article

Selective enrichment of active bacterial taxa in the Microcystis associated microbiome during colony growth

2025
Request Book From Autostore and Choose the Collection Method
Overview
The toxic cyanobacterium Microcystis causes worldwide health concerns, being frequently found in freshwater and estuarine ecosystems. Under natural conditions, Microcystis spp. show a colonial lifestyle involving a phycosphere populated by a highly diverse associated microbiome. In a previous study, we have proposed that colony formation and growth may be achieved through mechanisms of multispecies bacterial biofilm formation. Starting with single-cells, specific bacteria would be recruited from the environment to attach and create a buoyant biofilm or colony. This progression from a few single cells to large colonies would encompass the growth of the Microcystis community and bloom formation. In order to test this, we applied 16S rDNA metabarcoding to evaluate the changes in bacterial community structure (gDNA) and its active portion (cDNA) between different sample sizes obtained from a Microcystis bloom. Bloom sample was sieved by size, from one or a few cells (U fraction) to large colonies (maximum linear dimension ≥ 150 µm; L fraction), including small (20–60 µm, S fraction) and medium size (60–150 µm, M fraction) colonies. We found that gDNA- and cDNA-based bacterial assemblages significantly differed mostly due to the presence of different taxa that became active among the different sizes. The compositional variations in the communities between the assessed sample sizes were mainly attributed to turnover. From U to M fractions the turnover was a result of selection processes, while between M and L fractions stochastic processes were likely responsible for the changes. The results suggest that colony formation and growth are a consequence of mechanisms accounting for recruitment and selection of specific bacterial groups, which activate or stop growing through the different phases of the biofilm formation. When the final phase (L fraction colonies) is reached the colonies start to disaggregate (bloom decay), few cells or single cells are released and they can start new biofilms when conditions are suitable (bloom development).