MbrlCatalogueTitleDetail

Do you wish to reserve the book?
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets
Journal Article

scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background Recently, pioneering expression quantitative trait loci (eQTL) studies on single cell RNA sequencing (scRNA-seq) data have revealed new and cell-specific regulatory single nucleotide variants (SNVs). Here, we present an alternative QTL-related approach applicable to transcribed SNV loci from scRNA-seq data: scReQTL. ScReQTL uses Variant Allele Fraction (VAF RNA ) at expressed biallelic loci, and corelates it to gene expression from the corresponding cell. Results Our approach employs the advantage that, when estimated from multiple cells, VAF RNA can be used to assess effects of SNVs in a single sample or individual. In this setting scReQTL operates in the context of identical genotypes, where it is likely to capture RNA-mediated genetic interactions with cell-specific and transient effects. Applying scReQTL on scRNA-seq data generated on the 10 × Genomics Chromium platform using 26,640 mesenchymal cells derived from adipose tissue obtained from three healthy female donors, we identified 1272 unique scReQTLs. ScReQTLs common between individuals or cell types were consistent in terms of the directionality of the relationship and the effect size. Comparative assessment with eQTLs from bulk sequencing data showed that scReQTL analysis identifies a distinct set of SNV-gene correlations, that are substantially enriched in known gene-gene interactions and significant genome-wide association studies (GWAS) loci. Conclusion ScReQTL is relevant to the rapidly growing source of scRNA-seq data and can be applied to outline SNVs potentially contributing to cell type-specific and/or dynamic genetic interactions from an individual scRNA-seq dataset. Availability: https://github.com/HorvathLab/NGS/tree/master/scReQTL