MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG
Journal Article

Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG

2014
Request Book From Autostore and Choose the Collection Method
Overview
GABAB-receptor (GABABR) mediated inhibition is important in regulating neuronal excitability. The paired-pulse transcranial magnetic stimulation (TMS) protocol of long-interval intracortical inhibition (LICI) likely reflects this GABABergic inhibition. However, this view is based on indirect evidence from electromyographic (EMG) studies. Here we combined paired-pulse TMS with simultaneous electroencephalography (paired-pulse TMS–EEG) and pharmacology to directly investigate mechanisms of LICI at the cortical level. We tested the effects of a conditioning stimulus (CS100) applied 100ms prior to a test stimulus (TS) over primary motor cortex on TS-evoked EEG-potentials (TEPs). Healthy subjects were given a single oral dose of baclofen, a GABABR agonist, or diazepam, a positive modulator at GABAARs, in a placebo-controlled, pseudo-randomized double-blinded crossover study. LICI was quantified as the difference between paired-pulse TEPs (corrected for long-lasting EEG responses by the conditioning pulse) minus single-pulse TEPs. LICI at baseline (i.e. pre-drug intake) was characterized by decreased P25, N45, N100 and P180 and increased P70 TEP components. Baclofen resulted in a trend towards the enhancement of LICI of the N45 and N100, and significantly enhanced LICI of the P180. In contrast, diazepam consistently suppressed LICI of late potentials (i.e. N100, P180), without having an effect on LICI of earlier (i.e. P25, N45 and P70) potentials. These findings demonstrate for the first time directly at the system level of the human cortex that GABABR-mediated cortical inhibition contributes to LICI, while GABAAR-mediated inhibition occludes LICI. Paired-pulse TMS–EEG allows investigating cortical GABABR-mediated inhibition more directly and specifically than hitherto possible, and may thus inform on network abnormalities caused by disordered inhibition, e.g. in patients with schizophrenia or epilepsy.