MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Expression profiling of ion channel genes predicts clinical outcome in breast cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Expression profiling of ion channel genes predicts clinical outcome in breast cancer
Journal Article

Expression profiling of ion channel genes predicts clinical outcome in breast cancer

2013
Request Book From Autostore and Choose the Collection Method
Overview
Background Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test. Results 22, 24, and 30 ion channel genes are found to be differentially expressed with a change in p53 mutation status, ER status, and tumor histological grade in the discovery cohort. We assign the 30 tumor grade associated ion channel genes as the IC30 gene signature. We find that IC30 risk score predicts clinical outcome ( P  < 0.05) in the discovery cohort and 6 out of 7 validation cohorts. Multivariate and univariate tests conducted in two validation cohorts indicate that IC30 is a robust prognostic biomarker, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node status, tumor size, tumor grade, estrogen and progesterone receptor status, and p53 mutation status. Conclusions We identified a molecular gene signature IC30, which represents a promising diagnostic and prognostic biomarker in breast cancer. Our results indicate that information regarding the expression of ion channels in tumor pathology could provide new targets for therapy in human cancers.