MbrlCatalogueTitleDetail

Do you wish to reserve the book?
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
In silico characterisation of stand-alone response regulators of Streptococcus pyogenes
Journal Article

In silico characterisation of stand-alone response regulators of Streptococcus pyogenes

2020
Request Book From Autostore and Choose the Collection Method
Overview
Bacterial \"stand-alone\" response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.