MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings
Journal Article

Accurate prediction of drug-protein interactions by maintaining the original topological relationships among embeddings

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Learning-based methods have recently demonstrated strong potential in predicting drug-protein interactions (DPIs). However, existing approaches often fail to achieve accurate predictions on real-world imbalanced datasets while maintaining high generalizability and scalability, limiting their practical applicability. Results This study proposes a highly generalized model, GLDPI, aimed at improving prediction accuracy in imbalanced scenarios by preserving the topological relationships among initial molecular representations in the embedding space. Specifically, GLDPI employs dedicated encoders to transform one-dimensional sequence information of drugs and proteins into embedding representations and efficiently calculates the likelihood of DPIs using cosine similarity. Additionally, we introduce a prior loss function based on the guilt-by-association principle to ensure that the topology of the embedding space aligns with the structure of the initial drug-protein network. This design enables GLDPI to effectively capture network relationships and key features of molecular interactions, thereby significantly enhancing predictive performance. Conclusions Experimental results highlight GLDPI’s superior performance on multiple highly imbalanced benchmark datasets, achieving over a 100% improvement in the AUPR metric compared to state-of-the-art methods. Additionally, GLDPI demonstrates exceptional generalization capabilities in cold-start experiments, excelling in predicting novel drug-protein interactions. Furthermore, the model exhibits remarkable scalability, efficiently inferring approximately 1.2 × 10 10 drug-protein pairs in less than 10 h.