MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure
Journal Article

Preventing spread of aerosolized infectious particles during medical procedures: A lab-based analysis of an inexpensive plastic enclosure

2022
Request Book From Autostore and Choose the Collection Method
Overview
Severe viral respiratory diseases, such as SARS-CoV-2, are transmitted through aerosol particles produced by coughing, talking, and breathing. Medical procedures including tracheal intubation, extubation, dental work, and any procedure involving close contact with a patient’s airways can increase exposure to infectious aerosol particles. This presents a significant risk for viral exposure of nearby healthcare workers during and following patient care. Previous studies have examined the effectiveness of plastic enclosures for trapping aerosol particles and protecting health-care workers. However, many of these enclosures are expensive or are burdensome for healthcare workers to work with. In this study, a low-cost plastic enclosure was designed to reduce aerosol spread and viral transmission during medical procedures, while also alleviating issues found in the design and use of other medical enclosures to contain aerosols. This enclosure is fabricated from clear polycarbonate for maximum visibility. A large single-side cutout provides health care providers with ease of access to the patient with a separate cutout for equipment access. A survey of medical providers in a local hospital network demonstrated their approval of the enclosure’s ease of use and design. The enclosure with appropriate plastic covers reduced total escaped particle number concentrations (diameter > 0.01 μm) by over 93% at 8 cm away from all openings. Concentration decay experiments indicated that the enclosure without active suction should be left on the patient for 15–20 minutes following a tracheal manipulation to allow sufficient time for >90% of aerosol particles to settle upon interior surfaces. This decreases to 5 minutes when 30 LPM suction is applied. This enclosure is an inexpensive, easily implemented additional layer of protection that can be used to help contain infectious or otherwise potentially hazardous aerosol particles while providing access into the enclosure.

MBRLCatalogueRelatedBooks