MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle
Journal Article

Deep learning algorithms reveal increased social activity in rats at the onset of the dark phase of the light/dark cycle

2024
Request Book From Autostore and Choose the Collection Method
Overview
The rapid decrease of light intensity is a potent stimulus of rats’ activity. The nature of this activity, including the character of social behavior and the composition of concomitant ultrasonic vocalizations (USVs), is unknown. Using deep learning algorithms, this study aimed to examine the social life of rat pairs kept in semi-natural conditions and observed during the transitions between light and dark, as well as between dark and light periods. Over six days, animals were video- and audio-recorded during the transition sessions, each starting 10 minutes before and ending 10 minutes after light change. The videos were used to train and apply the DeepLabCut neural network examining animals’ movement in space and time. DeepLabCut data were subjected to the Simple Behavioral Analysis (SimBA) toolkit to build models of 11 distinct social and non-social behaviors. DeepSqueak toolkit was used to examine USVs. Deep learning algorithms revealed lights-off-induced increases in fighting, mounting, crawling, and rearing behaviors, as well as 22-kHz alarm calls and 50-kHz flat and short, but not frequency-modulated calls. In contrast, the lights-on stimulus increased general activity, adjacent lying (huddling), anogenital sniffing, and rearing behaviors. The animals adapted to the housing conditions by showing decreased ultrasonic calls as well as grooming and rearing behaviors, but not fighting. The present study shows a lights-off-induced increase in aggressive behavior but fails to demonstrate an increase in a positive affect defined by hedonic USVs. We further confirm and extend the utility of deep learning algorithms in analyzing rat social behavior and ultrasonic vocalizations.

MBRLCatalogueRelatedBooks