MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability
Journal Article

Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Computational methods of predicting protein stability changes upon missense mutations are invaluable tools in high-throughput studies involving a large number of protein variants. However, they are limited by a wide variation in accuracy and difficulty of assessing prediction uncertainty. Using a popular computational tool, FoldX, we develop a statistical framework that quantifies the uncertainty of predicted changes in protein stability. Results We show that multiple linear regression models can be used to quantify the uncertainty associated with FoldX prediction for individual mutations. Comparing the performance among models with varying degrees of complexity, we find that the model precision improves significantly when we utilize molecular dynamics simulation as part of the FoldX workflow. Based on the model that incorporates information from molecular dynamics, biochemical properties, as well as FoldX energy terms, we can generally expect upper bounds on the uncertainty of folding stability predictions of ± 2.9 kcal/mol and ± 3.5 kcal/mol for binding stability predictions. The uncertainty for individual mutations varies; our model estimates it using FoldX energy terms, biochemical properties of the mutated residue, as well as the variability among snapshots from molecular dynamics simulation. Conclusions Using a linear regression framework, we construct models to predict the uncertainty associated with FoldX prediction of stability changes upon mutation. This technique is straightforward and can be extended to other computational methods as well.