MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A small proton charge radius from an electron–proton scattering experiment
A small proton charge radius from an electron–proton scattering experiment
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A small proton charge radius from an electron–proton scattering experiment
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A small proton charge radius from an electron–proton scattering experiment
A small proton charge radius from an electron–proton scattering experiment

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A small proton charge radius from an electron–proton scattering experiment
A small proton charge radius from an electron–proton scattering experiment
Journal Article

A small proton charge radius from an electron–proton scattering experiment

2019
Request Book From Autostore and Choose the Collection Method
Overview
Elastic electron–proton scattering (e–p) and the spectroscopy of hydrogen atoms are the two methods traditionally used to determine the proton charge radius, r p . In 2010, a new method using muonic hydrogen atoms 1 found a substantial discrepancy compared with previous results 2 , which became known as the ‘proton radius puzzle’. Despite experimental and theoretical efforts, the puzzle remains unresolved. In fact, there is a discrepancy between the two most recent spectroscopic measurements conducted on ordinary hydrogen 3 , 4 . Here we report on the proton charge radius experiment at Jefferson Laboratory (PRad), a high-precision e–p experiment that was established after the discrepancy was identified. We used a magnetic-spectrometer-free method along with a windowless hydrogen gas target, which overcame several limitations of previous e–p experiments and enabled measurements at very small forward-scattering angles. Our result, r p  = 0.831 ± 0.007 stat  ± 0.012 syst  femtometres, is smaller than the most recent high-precision e–p measurement 5 and 2.7 standard deviations smaller than the average of all e–p experimental results 6 . The smaller r p we have now measured supports the value found by two previous muonic hydrogen experiments 1 , 7 . In addition, our finding agrees with the revised value (announced in 2019) for the Rydberg constant 8 —one of the most accurately evaluated fundamental constants in physics. A magnetic-spectrometer-free method for electron–proton scattering data reveals a proton charge radius 2.7 standard deviations smaller than the currently accepted value from electron–proton scattering, yet consistent with other recent experiments.