MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone
Journal Article

Population transcriptogenomics highlights impaired metabolism and small population sizes in tree frogs living in the Chernobyl Exclusion Zone

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species’ population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. Results We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. Conclusions Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.