MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
Journal Article

A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression

2024
Request Book From Autostore and Choose the Collection Method
Overview
While studies on the sublethal effects of chemical residues in beeswax on adult honey bees are increasing, the study protocols assessing the impacts on honey bee brood in realistic conditions still need to be investigated. Moreover, little is known about the residue’s effect on gene expression in honey bee brood. This study reports the effects of chlorpyriphos-ethyl, acrinathrin and stearin worker pupae exposure through contaminated or adulterated beeswax on the gene expression of some key health indicators, using a novel in vivo realistic model. Larvae were reared in acrinathrin (12.5, 25, 10 and 100 ppb) and chlorpyriphos-ethyl (5, 10, 500 and 5000 ppb) contaminated or stearin adulterated beeswax (3, 4, 5, 6 and 9%) in newly formed colonies to reduce the influence of external factors. On day 11, mortality rates were assessed. Honey bee pupae were extracted from the comb after 19 days of rearing and were analysed for the gene expression profile of four genes involved in the immune response to pathogens and environmental stress factors ( Imd , dorsal , domeless and defensin ), and two genes involved in detoxifications mechanisms (CYP6AS14 and CYP9Q3). We found no linear relation between the increase in the pesticide concentrations and the brood mortality rates, unlike stearin where an increase in stearin percentage led to an exponential increase in brood mortality. The immune system of pupae raised in acrinathrin contaminated wax was triggered and the expression of CYP6AS14 was significantly upregulated (exposure to 12.5 and 25 ppb). Almost all expression levels of the tested immune and detoxification genes were down-regulated when pupae were exposed to chlorpyrifos-contaminated wax. The exposure to stearin triggered the immune system and detoxification system of the pupae. The identification of substance-specific response factors might ultimately serve to identify molecules that are safer for bees and the ecosystem’s health.