MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers
Journal Article

Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers

2020
Request Book From Autostore and Choose the Collection Method
Overview
The aim of the current study was to develop membrane-based transdermal patches of lornoxicam gel using oleic acid (OA)and propylene glycol (PG) as penetration enhancers to improve drug delivery across the skin and to evaluate in vivo analgesic and anti-inflammatory activity. For this purpose, nine formulations were developed in accordance with 32 factorial design using Design Expert® 11. The concentration of propylene glycol (X1) and oleic acid (X2) were selected as independent variable whereas Q10 (Y1), flux (Y2) and lag time (Y3) were considered as the response variables. The impact of drug loading, surface area, gel concentration, membrane variation and agitation speed on drug release and permeation was also studied. The skin sensitivity reaction, analgesic activity and anti-inflammatory action of the optimized patch were also determined in Albino Wistar rats. Stability studies were performed for three months at three different temperature conditions. The result suggests that a membrane-based system with controlled zero-order drug release of 95.8 ± 1.121% for 10 h exhibiting flux of 126.51±1.19 μg/cm2/h and lag time of 0.908 ±0.57h was optimized with the desired analgesic and anti-inflammatory effect can be obtained by using propylene glycol and oleic acid co-solvents as a penetration enhancer. The patch was also found stable at 4˚C for a period of 6.44 months. Formulation F9 comprising of 10% PG and 3% OA was selected as an optimized formulation. The study demonstrates that the fabricated transdermal system of lornoxicam can deliver the drug through the skin in a controlled manner with desired analgesic and anti-inflammatory activity and can be considered as a suitable alternative of the oral route.