MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness
Journal Article

Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness

2020
Request Book From Autostore and Choose the Collection Method
Overview
Cochlear implantation for single-sided deafness (SSD) is the only treatment option with the potential to restore binaural hearing cues. Significant binaural benefit has been measured in adults by speech in noise and localisation tests, who receive a cochlear implant for SSD, however, little is known on the cortical changes that help provide this benefit. In the present study, detection of sound in the auditory cortex, speech testing and localisation was used to investigate the ability of a cochlear implant (CI) to restore auditory cortical latencies and improve binaural benefit in the adult SSD population. Twenty-nine adults with acquired single-sided deafness who received a CI in adulthood were studied. Speech perception in noise was tested using the Bamford-Kowal-Bench speech-in-noise test, localisation ability was measured using the auditory speech sounds evaluation (AδE) localisation test and cortical auditory evoked responses, comparing N1-P2 latencies recorded from the normal hearing ear and cochlear implant were used to investigate the synchrony of the cortical pathway from the CI and normal hearing ear (NHe) with binaural hearing function. There was a significant improvement in speech perception in noise in all spatial configurations S0/N0 (Z = -3.066, p<0.002), S0/NHE (Z = -4.031, p<0.001), SCI/NHE (Z = -3.851, p<0.001). Localization significantly improved when tested with the cochlear implant on (p<0.001) with a shorter duration of deafness correlating to a greater improvement in localisation ability F(1:18) = 6.854; p = 0.017). There was no significant difference in N1-P2 latency recorded from the normal hearing ear and the CI. Cortical auditory evoked response latencies recorded from the CI and NHe showed no significant difference, indicating that the detection of sound in the auditory cortex occurred simultaneously, providing the cortex with auditory information for binaural hearing.