Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Mapping global inputs and impacts from of human sewage in coastal ecosystems
by
Villasenor, Juan Carlos
, Halpern, Benjamin S.
, Caylor, Kelly
, Tuholske, Cascade
, Blasco, Gordon
, Frazier, Melanie
in
Agricultural ecosystems
/ Agricultural runoff
/ Agricultural wastes
/ Agriculture
/ Agrochemicals
/ Algae
/ Algal blooms
/ Animal wastes
/ Animals
/ Climate change
/ Coastal ecosystems
/ Coastal waters
/ Coastal zone
/ Coasts
/ Conservation
/ Coral Reefs
/ Crop Protection
/ Ecosystems
/ Effluents
/ Environmental aspects
/ Environmental Monitoring - methods
/ Environmental science
/ Eutrophication
/ Farms
/ Fecal coliforms
/ Fertilizers
/ Fertilizers - analysis
/ Geographical distribution
/ Heterogeneity
/ High resolution
/ Human influences
/ Human wastes
/ Humans
/ Hypoxia
/ Impact analysis
/ Indicator species
/ Livestock
/ Marine ecosystems
/ Modelling
/ Nitrogen
/ Nitrogen - analysis
/ Oceans and Seas
/ Pathogens
/ Population growth
/ Protection and preservation
/ Proteins
/ Public health
/ Public Health - methods
/ Septic wastewater
/ Sewage
/ Sewage - analysis
/ Sewer systems
/ Spatial heterogeneity
/ Strategic management
/ Surface water
/ Terrestrial environments
/ Wastewater
/ Water quality
/ Water treatment
/ Watersheds
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mapping global inputs and impacts from of human sewage in coastal ecosystems
by
Villasenor, Juan Carlos
, Halpern, Benjamin S.
, Caylor, Kelly
, Tuholske, Cascade
, Blasco, Gordon
, Frazier, Melanie
in
Agricultural ecosystems
/ Agricultural runoff
/ Agricultural wastes
/ Agriculture
/ Agrochemicals
/ Algae
/ Algal blooms
/ Animal wastes
/ Animals
/ Climate change
/ Coastal ecosystems
/ Coastal waters
/ Coastal zone
/ Coasts
/ Conservation
/ Coral Reefs
/ Crop Protection
/ Ecosystems
/ Effluents
/ Environmental aspects
/ Environmental Monitoring - methods
/ Environmental science
/ Eutrophication
/ Farms
/ Fecal coliforms
/ Fertilizers
/ Fertilizers - analysis
/ Geographical distribution
/ Heterogeneity
/ High resolution
/ Human influences
/ Human wastes
/ Humans
/ Hypoxia
/ Impact analysis
/ Indicator species
/ Livestock
/ Marine ecosystems
/ Modelling
/ Nitrogen
/ Nitrogen - analysis
/ Oceans and Seas
/ Pathogens
/ Population growth
/ Protection and preservation
/ Proteins
/ Public health
/ Public Health - methods
/ Septic wastewater
/ Sewage
/ Sewage - analysis
/ Sewer systems
/ Spatial heterogeneity
/ Strategic management
/ Surface water
/ Terrestrial environments
/ Wastewater
/ Water quality
/ Water treatment
/ Watersheds
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping global inputs and impacts from of human sewage in coastal ecosystems
by
Villasenor, Juan Carlos
, Halpern, Benjamin S.
, Caylor, Kelly
, Tuholske, Cascade
, Blasco, Gordon
, Frazier, Melanie
in
Agricultural ecosystems
/ Agricultural runoff
/ Agricultural wastes
/ Agriculture
/ Agrochemicals
/ Algae
/ Algal blooms
/ Animal wastes
/ Animals
/ Climate change
/ Coastal ecosystems
/ Coastal waters
/ Coastal zone
/ Coasts
/ Conservation
/ Coral Reefs
/ Crop Protection
/ Ecosystems
/ Effluents
/ Environmental aspects
/ Environmental Monitoring - methods
/ Environmental science
/ Eutrophication
/ Farms
/ Fecal coliforms
/ Fertilizers
/ Fertilizers - analysis
/ Geographical distribution
/ Heterogeneity
/ High resolution
/ Human influences
/ Human wastes
/ Humans
/ Hypoxia
/ Impact analysis
/ Indicator species
/ Livestock
/ Marine ecosystems
/ Modelling
/ Nitrogen
/ Nitrogen - analysis
/ Oceans and Seas
/ Pathogens
/ Population growth
/ Protection and preservation
/ Proteins
/ Public health
/ Public Health - methods
/ Septic wastewater
/ Sewage
/ Sewage - analysis
/ Sewer systems
/ Spatial heterogeneity
/ Strategic management
/ Surface water
/ Terrestrial environments
/ Wastewater
/ Water quality
/ Water treatment
/ Watersheds
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping global inputs and impacts from of human sewage in coastal ecosystems
Journal Article
Mapping global inputs and impacts from of human sewage in coastal ecosystems
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Coastal marine ecosystems face a host of pressures from both offshore and land-based human activity. Research on terrestrial threats to coastal ecosystems has primarily focused on agricultural runoff, specifically showcasing how fertilizers and livestock waste create coastal eutrophication, harmful algae blooms, or hypoxic or anoxic zones. These impacts not only harm coastal species and ecosystems but also impact human health and economic activities. Few studies have assessed impacts of human wastewater on coastal ecosystems and community health. As such, we lack a comprehensive, fine-resolution, global assessment of human sewage inputs that captures both pathogens and nutrient flows to coastal waters and the potential impacts on coastal ecosystems. To address this gap, we use a new high-resolution geospatial model to measure and map nitrogen (N) and pathogen—fecal indicator organisms (FIO)—inputs from human sewage for ~135,000 watersheds globally. Because solutions depend on the source, we separate nitrogen and pathogen inputs from sewer, septic, and direct inputs. Our model indicates that wastewater adds 6.2Tg nitrogen into coastal waters, which is approximately 40% of total nitrogen from agriculture. Of total wastewater N, 63% (3.9Tg N) comes from sewered systems, 5% (0.3Tg N) from septic, and 32% (2.0Tg N) from direct input. We find that just 25 watersheds contribute nearly half of all wastewater N, but wastewater impacts most coastlines globally, with sewered, septic, and untreated wastewater inputs varying greatly across watersheds and by country. Importantly, model results find that 58% of coral and 88% of seagrass beds are exposed to wastewater N input. Across watersheds, N and FIO inputs are generally correlated. However, our model identifies important fine-grained spatial heterogeneity that highlight potential tradeoffs and synergies essential for management actions. Reducing impacts of nitrogen and pathogens on coastal ecosystems requires a greater focus on where wastewater inputs vary across the planet. Researchers and practitioners can also overlay these global, high resolution, wastewater input maps with maps describing the distribution of habitats and species, including humans, to determine the where the impacts of wastewater pressures are highest. This will help prioritize conservation efforts.Without such information, coastal ecosystems and the human communities that depend on them will remain imperiled.
This website uses cookies to ensure you get the best experience on our website.