MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Feature Selection via Chaotic Antlion Optimization
Feature Selection via Chaotic Antlion Optimization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Feature Selection via Chaotic Antlion Optimization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Feature Selection via Chaotic Antlion Optimization
Feature Selection via Chaotic Antlion Optimization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Feature Selection via Chaotic Antlion Optimization
Feature Selection via Chaotic Antlion Optimization
Journal Article

Feature Selection via Chaotic Antlion Optimization

2016
Request Book From Autostore and Choose the Collection Method
Overview
Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used. We propose an optimization approach for the feature selection problem that considers a \"chaotic\" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.