MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Climate and water-table levels regulate peat accumulation rates across Europe
Climate and water-table levels regulate peat accumulation rates across Europe
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Climate and water-table levels regulate peat accumulation rates across Europe
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Climate and water-table levels regulate peat accumulation rates across Europe
Climate and water-table levels regulate peat accumulation rates across Europe

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Climate and water-table levels regulate peat accumulation rates across Europe
Climate and water-table levels regulate peat accumulation rates across Europe
Journal Article

Climate and water-table levels regulate peat accumulation rates across Europe

2025
Request Book From Autostore and Choose the Collection Method
Overview
Peatlands are globally-important carbon sinks at risk of degradation from climate change and direct human impacts, including drainage and burning. Peat accumulates when there is a positive mass balance between plant productivity inputs and litter/peat decomposition losses. However, the factors influencing the rate of peat accumulation over time are still poorly understood. We examine apparent peat accumulation rates (aPAR) during the last two millennia from 28 well-dated, intact European peatlands and find a range of between 0.005 and 0.448 cm yr-1 (mean = 0.118 cm yr-1). Our work provides important context for the commonplace assertion that European peatlands accumulate at ~0.1 cm per year. The highest aPAR values are found in the Scandinavian and Baltic regions, in contrast to Britain, Ireland, and Continental Europe. We find that summer temperature is a significant climatic control on aPAR across our European sites. Furthermore, a significant relationship is observed between aPAR and water-table depth (reconstructed from testate-amoeba subfossils), suggesting that higher aPAR levels are often associated with wetter conditions. We also note that the highest values of aPAR are found when the water table is within 5-10 cm of the peatland surface. aPAR is generally low when water table depths are < 0 cm (standing water) or > 25 cm, which may relate to a decrease in plant productivity and increased decomposition losses, respectively. Model fitting indicates that the optimal water table depth (WTD) for maximum aPAR is ~10 cm. Our study suggests that, in some European peatlands, higher summer temperatures may enhance growth rates, but only if a sufficiently high water table is maintained. In addition, our findings corroborate contemporary observational and experimental studies that have suggested an average water-table depth of ~10 cm is optimal to enable rapid peat growth and therefore carbon sequestration in the long term. This has important implications for peatland restoration and rewetting strategies, in global efforts to mitigate climate change.