MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine
Journal Article

An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine

2020
Request Book From Autostore and Choose the Collection Method
Overview
Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has been widely used for biomedical applications. Here, we have analyzed the effect of HA on the rescue of primary cells under stress as well as its potential to recover muscle atrophy and validated the developed model in vitro using primary muscle cells derived from rats. The potentials of different HAs were elucidated through comparative analyses using pharmaceutical grade a) high (HHA) and b) low molecular weight (LHA) hyaluronans, c) hybrid cooperative complexes (HCC) of HA in three experimental set-ups. The cells were characterized based on the expression of myogenin, a muscle-specific biomarker, and the proliferation was analyzed using Time-Lapse Video Microscopy (TLVM). Cell viability in response to H2O2 challenge was evaluated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression of the superoxide dismutase enzyme (SOD-2) was assessed by western blotting. Additionally, in order to establish an in vitro model of atrophy, muscle cells were treated with tumor necrosis factor-alpha (TNF-α), along with hyaluronans. The expression of Atrogin, MuRF-1, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and Forkhead-box-(Fox)-O-3 (FoxO3a) was evaluated by western blotting to elucidate the molecular mechanism of atrophy. The results showed that HCC and HHA increased cell proliferation by 1.15 and 2.3 folds in comparison to un-treated cells (control), respectively. Moreover, both pre- and post-treatments of HAs restored the cell viability, and the SOD-2 expression was found to be reduced by 1.5 fold in HA-treated cells as compared to the stressed condition. Specifically in atrophic stressed cells, HCC revealed a noteworthy beneficial effect on the myogenic biomarkers indicating that it could be used as a promising platform for tissue regeneration with specific attention to muscle cell protection against stressful agents.