MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An expansive human regulatory lexicon encoded in transcription factor footprints
An expansive human regulatory lexicon encoded in transcription factor footprints
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An expansive human regulatory lexicon encoded in transcription factor footprints
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An expansive human regulatory lexicon encoded in transcription factor footprints
An expansive human regulatory lexicon encoded in transcription factor footprints

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An expansive human regulatory lexicon encoded in transcription factor footprints
An expansive human regulatory lexicon encoded in transcription factor footprints
Journal Article

An expansive human regulatory lexicon encoded in transcription factor footprints

2012
Request Book From Autostore and Choose the Collection Method
Overview
Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis –regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency. DNase I footprinting in 41 cell and tissue types reveals millions of short sequence elements encoding an expansive repertoire of conserved recognition sequences for DNA-binding proteins. ENCODE: transcription-factor footprints DNaseI footprinting detects DNA sequences that are protected from cleavage by DNaseI because they are bound by regulatory factors. Studying these footprints in 41 diverse cell and tissue types, the authors describe millions of short sequence elements that are conserved recognition sequences for DNA-binding proteins. The effort nearly doubles the size of the human cis -regulatory lexicon and provides insight into chromatin states and levels of evolutionary conservation. A large collection of novel regulatory-factor recognition motifs that closely parallel major regulators of development, differentiation and pluripotency is also described.