MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ancient animal microRNAs and the evolution of tissue identity
Ancient animal microRNAs and the evolution of tissue identity
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ancient animal microRNAs and the evolution of tissue identity
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ancient animal microRNAs and the evolution of tissue identity
Ancient animal microRNAs and the evolution of tissue identity

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ancient animal microRNAs and the evolution of tissue identity
Ancient animal microRNAs and the evolution of tissue identity
Journal Article

Ancient animal microRNAs and the evolution of tissue identity

2010
Request Book From Autostore and Choose the Collection Method
Overview
An oral tradition for microRNA Recent work suggests that microRNAs, the ubiquitous, small, non-coding genetic elements with important regulatory roles, were important in the evolution of complexity in multicellular animals. What was the role of these microRNAs when they first evolved? A deep sequencing study of the marine ragworm Platynereis dumerilii , and comparison with other bilaterian animals, suggests that the most ancient known microRNA, miR-100, was initially active in neurosecretory cells around the mouth. Other highly conserved varieties were first present in specific tissues and organ systems, such as ciliated cells and parts of the nervous system, musculature and gut. This work suggests that the last common ancestor of bilaterian animals already had all these structures. Recent work suggests that microRNAs might have been important in the evolution of complexity in multicellular animals. Here it is shown that the most ancient known microRNA, miR–100, was initially active in neurosecretory cells around the mouth. Other highly conserved varieties were first present in specific tissues and organ systems. Thus, microRNA expression was initially restricted to an ancient set of ancient animal cell types and tissues. The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs 1 , 2 . To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii , a protostome retaining ancestral bilaterian features 3 , 4 , in Capitella , another marine annelid, in the sea urchin Strongylocentrotus , a deuterostome, and in sea anemone Nematostella , representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome–deuterostome ancestor.