Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A Hardware Accelerator for The Inference of a Convolutional Neural Network
by
Walter D. Villamizar Luna
, Carlos Augusto Fajardo Ariza
, Edwin González
in
acelerador en hardware
/ cnn
/ fpga
/ mnist
/ zynq
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Hardware Accelerator for The Inference of a Convolutional Neural Network
by
Walter D. Villamizar Luna
, Carlos Augusto Fajardo Ariza
, Edwin González
in
acelerador en hardware
/ cnn
/ fpga
/ mnist
/ zynq
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Hardware Accelerator for The Inference of a Convolutional Neural Network
Journal Article
A Hardware Accelerator for The Inference of a Convolutional Neural Network
2020
Request Book From Autostore
and Choose the Collection Method
Overview
Las redes neuronales convolucionales cada vez son más populares en aplicaciones de aprendizaje profundo, como por ejemplo en clasificación de imágenes, reconocimiento de voz, medicina, entre otras. Sin embargo, estas redes son computacionalmente costosas y requieren altos recursos de memoria. En este trabajo se propone un acelerador en hardware para el proceso de inferencia de la red Lenet-5, un esquema de coprocesamiento hardware/software. El objetivo de la implementación es reducir el uso de recursos de hardware y obtener el mejor rendimiento computacional posible durante el proceso de inferencia. El diseño fue implementado en la tarjeta de desarrollo Digilent Arty Z7-20, la cual está basada en el System on Chip (SoC) Zynq-7000 de Xilinx. Nuestra implementación logró una precisión del 97,59 % para la base de datos MNIST utilizando tan solo 12 bits en el formato de punto fijo. Los resultados muestran que el esquema de co-procesamiento, el cual opera a una velocidad de 100 MHz, puede identificar aproximadamente 441 imágenes por segundo, que equivale aproximadamente a un 17% más rápido que una implementación de software a 650 MHz. Es difícil comparar nuestra implementación con otras implementaciones similares, porque las implementaciones encontradas en la literatura no son exactamente como la que realizó en este trabajo. Sin embargo, algunas comparaciones, en relación con el uso de recursos lógicos y la precisión, sugieren que nuestro trabajo supera a trabajos previos.
Publisher
Editorial Neogranadina
Subject
This website uses cookies to ensure you get the best experience on our website.