Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
12,050 result(s) for "biosensing"
Sort by:
Intelligent pervasive computing systems for smarter healthcare
\"This book describes the innovations in healthcare made possible by computing through bio-sensors. The reader learns how that goal is being pursued by the editors' examination of topics such as the design and development of pervasive healthcare technologies, data modeling and information management, wearable biosensors and their systems, and more. The pervasive computing paradigm offers tremendous advantages in diversified areas of healthcare research and technology. Pervasive computational support enables the optimization of medical assessment for a healthier, safer, and more productive society\"-- Provided by publisher.
Toward a new generation of smart skins
Rapid advances in soft electronics, microfabrication technologies, miniaturization and electronic skins are facilitating the development of wearable sensor devices that are highly conformable and intimately associated with human skin. These devices—referred to as ‘smart skins’—offer new opportunities in the research study of human biology, in physiological tracking for fitness and wellness applications, and in the examination and treatment of medical conditions. Over the past 12 months, electronic skins have been developed that are self-healing, intrinsically stretchable, designed into an artificial afferent nerve, and even self-powered. Greater collaboration between engineers, biologists, informaticians and clinicians will be required for smart skins to realize their full potential and attain wide adoption in a diverse range of real-world settings.
Whispering-gallery-mode biosensing: label-free detection down to single molecules
Optical label-free detectors, such as the venerable surface plasmon resonance (SPR) sensor, are generally favored for their ability to obtain quantitative data on intermolecular binding. However, before the recent introduction of resonant microcavities that use whispering gallery mode (WGM) recirculation, sensitivity to single binding events had not materialized. Here we describe the enhancement mechanisms responsible for the extreme sensitivity of the WGM biosensor, review its current implementations and applications, and discuss its future possibilities.
Opto-VLSI devices and circuits for biomedical and healthcare applications
\"The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries\"-- Provided by publisher.
Structure- and mechanism-guided design of single fluorescent protein-based biosensors
Intensiometric genetically encoded biosensors, based on allosteric modulation of the fluorescence of a single fluorescent protein, are powerful tools for enabling imaging of neural activities and other cellular biochemical events. The archetypical example of such biosensors is the GCaMP series of Ca 2+ biosensors, which have been steadily improved over the past two decades and are now indispensable tools for neuroscience. However, no other biosensors have reached levels of performance, or had revolutionary impacts within specific disciplines, comparable to that of the Ca 2+ biosensors. Of the many reasons why this has been the case, a critical one has been a general black-box view of biosensor structure and mechanism. With this Perspective, we aim to summarize what is known about biosensor structure and mechanisms and, based on this foundation, provide guidelines to accelerate the development of a broader range of biosensors with performance comparable to that of the GCaMP series. Using extensive knowledge about the structures and mechanisms of genetically encoded fluorescent biosensors, this Perspective provides guidelines to aid and accelerate the development of an increasingly broad range of high-performance imaging tools.
Recent Developments in Enzyme, DNA and Immuno-Based Biosensors
Novel sensitive, rapid and economical biosensors are being developed in a wide range of medical environmental and food applications. In this paper, we review some of the main advances in the field over the past few years by discussing recent studies from literature. A biosensor, which is defined as an analytical device consisting of a biomolecule, a transducer and an output system, can be categorized according to the type of the incorporated biomolecule. The biomolecules can be enzymes, antibodies, ssDNA, organelles, cells etc. The main biosensor categories classified according to the biomolecules are enzymatic biosensors, immunosensors and DNA-based biosensors. These sensors can measure analytes produced or reduced during reactions at lower costs compared to the conventional detection techniques. Numerous types of biosensor studies conducted over the last decade have been explored here to reveal their key applications in medical, environmental and food industries which provide comprehensive perspective to the readers. Overviews of the working principles and applications of the reviewed sensors are also summarized.
Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Nanopore sensors for nucleic acid analysis
Nanopore analysis is an emerging technique that involves using a voltage to drive molecules through a nanoscale pore in a membrane between two electrolytes, and monitoring how the ionic current through the nanopore changes as single molecules pass through it. This approach allows charged polymers (including single-stranded DNA, double-stranded DNA and RNA) to be analysed with subnanometre resolution and without the need for labels or amplification. Recent advances suggest that nanopore-based sensors could be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000. In this article we review the use of nanopore technology in DNA sequencing, genetics and medical diagnostics. Recent advances suggest that nanopore-based sensors may be able to sequence the human genome for under $1,000. This article reviews the use of nanopore technology in DNA sequencing, genetics and medical diagnostics.
Seeing protein monolayers with naked eye through plasmonic Fano resonances
We introduce an ultrasensitive label-free detection technique based on asymmetric Fano resonances in plasmonic nanoholes with far reaching implications for point-of-care diagnostics. By exploiting extraordinary light transmission phenomena through high-quality factor (Qsolution