MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mechanisms of wetting-induced loess slope failures
Mechanisms of wetting-induced loess slope failures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mechanisms of wetting-induced loess slope failures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mechanisms of wetting-induced loess slope failures
Mechanisms of wetting-induced loess slope failures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mechanisms of wetting-induced loess slope failures
Mechanisms of wetting-induced loess slope failures
Journal Article

Mechanisms of wetting-induced loess slope failures

2019
Request Book From Autostore and Choose the Collection Method
Overview
Frequent occurrence of landslides induced by rainfall or irrigation has seriously threatened the urban and rural development in the Loess Plateau, China. The increase in pore water pressure has been identified as a key factor for understanding wetting-induced loess slopes failures. However, experimental studies are limited regarding the increase in pore water pressure of the collapse loess from an initial negative value until failure occurs under constant total stress condition. An old landslide with progressive retreat development at an early stage of the construction of the Lvliang Airport was selected as a case study. Field surveys including exploration wells and boreholes revealed very fresh sliding shear planes and clearly visible cracks, suggesting the creeping movement of the old landslide. In case of heavy rain or long-term rainfall, this old landslide may be resurrected, threatening the stability of the airport site. To examine the mechanism of the failure induced by wetting for this unsaturated loess landslide, loess specimens were taken from the field, followed by performing a series of laboratory tests, including triaxial shear tests at constant matric suctions and wetting tests at constant deviator stresses. The test results revealed that the wetting-induced deformations of the loess included volume and shear deformations, reflecting compression and shearing behaviour induced by wetting. The failure behaviour of the loess along a wetting path was dependent on the stress level and the loss degree of matric suction as well as the hydro-mechanical path, and could be well described by the linear form of the Mohr-Coulomb strength theory. On this basis, the threshold value of the stress level was identified, which could be used to judge whether the wetting-induced failure of the loess occurs. The threshold value of matric suction at failure was also identified to analyse the loss degree of matric suction from stable conditions to failure. The mechanism of the failure of the soil due to wetting revealed from the present study could interpret the rainfall-induced landslide in unsaturated loess.