MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Correlated and misclassified binary observations in complex surveys
Correlated and misclassified binary observations in complex surveys
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Correlated and misclassified binary observations in complex surveys
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Correlated and misclassified binary observations in complex surveys
Correlated and misclassified binary observations in complex surveys

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Correlated and misclassified binary observations in complex surveys
Correlated and misclassified binary observations in complex surveys
Journal Article

Correlated and misclassified binary observations in complex surveys

2020
Request Book From Autostore and Choose the Collection Method
Overview
Misclassifications in binary responses have long been a common problem in medical and health surveys. One way to handle misclassifications in clustered or longitudinal data is to incorporate the misclassification model through the generalized estimating equation (GEE) approach. However, existing methods are developed under a non-survey setting and cannot be used directly for complex survey data. We propose a pseudo-GEE method for the analysis of binary survey responses with misclassifications. We focus on cluster sampling and develop analysis strategies for analyzing binary survey responses with different forms of additional information for the misclassification process. The proposed methodology has several attractive features, including simultaneous inferences for both the response model and the association parameters. Finite sample performance of the proposed estimators is evaluated through simulation studies and an application using a real dataset from the Canadian Longitudinal Study on Aging. Les mauvaises classifications pour une variable réponse binaire donnée constituent un problème commun dans les enquêtes médicales. En présence de données longitudinales ou en grappe, une façon de traiter cette problématique consiste à incorporer un modèle de mauvaise classification à une approche par équations d’estimation généralisées (EEG). Les méthodes existantes n’ont toutefois pas été conçues pour des données d’enquêtes et ne peuvent donc pas être utilisées directement pour de telles données. Les auteurs proposent une méthode pseudo-EEG pour l’analyse de réponses binaires dans les enquêtes comportant de la mauvaise classification. Ils se concentrent sur l’échantillonnage par grappe et développent des stratégies pour analyser les réponses binaires en exploitant différentes formes d’information additionnelle à propos du processus de mauvaise classification. La méthodologie proposée comporte de nombreuses caractéristiques attrayantes, notamment la capacité d’inférer simultanément le modèle de réponse et les paramètres d’association. Les auteurs évaluent les performances de leur approche sur des échantillons finis par des études de simulation et une application à des données réelles de l’Étude longitudinale canadienne sur le vieillissement (ÉLCV).