MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization
Journal Article

Newly Synthesized Multifunctional Biopolymer Coated Magnetic Core/Shell Fe3O4@Au Nanoparticles for Evaluation of L-asparaginase Immobilization

2023
Request Book From Autostore and Choose the Collection Method
Overview
The immobilization strategy can promote greater enzyme utilization in applications by improving the overall stability and reusability of the enzyme. In this work, the L-asparaginase (L-ASNase) obtained from Escherichia coli was chosen as a model enzyme and immobilized onto the Fe 3 O 4 @Au-carboxymethyl chitosan (CMC) magnetic nanoparticles (MNPs) through adsorption. TEM, SEM, FT-IR, XRD, EDS, and TGA analyses were performed to examine the structure with and without L-ASNase. The yield of immobilized L-ASNase on Fe 3 O 4 @Au-CMC was found to be 68%. The biochemical properties such as optimum pH, optimum temperature, reusability, and thermal stability of the Fe 3 O 4 @Au-CMC/L-ASNase were comprehensively investigated. For instance, Fe 3 O 4 @Au-CMC/L-ASNase reached maximum activity at pH 7.0 and the optimum temperature was found to be 50 °C. The noticeably lower Ea value of the Fe 3 O 4 @Au-CMC/L-ASNase revealed the enhanced catalytic activity of this enzyme after immobilization. The Km and Vmax values were 3.27 ± 0.48 mM, and 51.54 ± 0.51 μmol min −1 for Fe 3 O 4 @Au-CMC/L-ASNase, respectively, which means good substrate affinity. The Fe 3 O 4 @Au-CMC/L-ASNase retained 65% of its initial activity even after 90 min at 60 °C. Moreover, it maintained more than 75% of its original activity after 10 cycles, indicating its excellent reusability. The results obtained suggested that this investigation highlights the use of MNPs as a support for the development of more economical and sustainable immobilized enzyme systems.