MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Design of Memristor-Based Combinational Logic Circuits
Design of Memristor-Based Combinational Logic Circuits
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Design of Memristor-Based Combinational Logic Circuits
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Design of Memristor-Based Combinational Logic Circuits
Design of Memristor-Based Combinational Logic Circuits

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Design of Memristor-Based Combinational Logic Circuits
Design of Memristor-Based Combinational Logic Circuits
Journal Article

Design of Memristor-Based Combinational Logic Circuits

2021
Request Book From Autostore and Choose the Collection Method
Overview
This paper proposes three modified memristor ratioed logic (MRL) gates: NOT, NOR and A AND (NOR B) (i.e., A·B¯), each of which only needs 1 memristor and 1 NMOS. Based on the modified MRL gates, we design some combinational logic circuits, including 1-bit comparator, 3-bit binary encoder, 3-bit binary decoder and 4:1 multiplexer. Furthermore, an improved multifunctional logic module is proposed, which contains one NMOS transistor and five memristors, and can implement AND, OR and XOR logic operations. Using this multifunctional logic module, a 4-bit comparator and a 1-bit full adder are designed. Finally, the proposed combinational logic circuits are verified by LTSPICE simulations. Compared with other memristor-based logic circuits and the traditional CMOS technology, the proposed logic circuits have made great progress in reducing delay, power consumption and the number of transistors.