MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury
Journal Article

Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury

2020
Request Book From Autostore and Choose the Collection Method
Overview
Individuals classified clinically as having a motor-complete spinal cord injury (mcSCI) should lack voluntary motor function below their injury level. Neurophysiological assessments using electromyography (EMG) and transcranial magnetic stimulation (TMS), however, have demonstrated that persons with mcSCI retain limited cortical descending innervation and voluntary activation of muscles below their level of injury, including muscles of the trunk and lower limb. We explored the possibility of whether there is also preserved innervation of the pelvic floor muscles (PFM) in persons with mcSCI. The PFM are controlled by widespread cortical and subcortical areas and typically coactivated with trunk and gluteal muscles to maintain continence and regulate intra-abdominal pressure. Nine mcSCI and eight control subjects participated in this cross-sectional study. Surface EMG was used to record activity in the PFM. Data were recorded while participants attempted various maneuvers of the trunk and pelvis. We also applied TMS at incrementing levels of intensity over the primary motor cortex area to record motor evoked potentials (MEPs) in the PFM. When performing the maneuvers, activation of the PFM was possible in all controls and the majority of SCI participants. However, the PFM were only activated in the SCI participants during maneuvers that engaged other trunk muscles, however. MEP responses in the PFM were also elicited in all controls and SCI participants, but MEP response characteristics were significantly altered in the SCI group. Our results suggest that persons with mcSCI retain some residual innervation of the PFM after injury, possibly via indirect cortical descending pathways.