MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov
Journal Article

Adsorption Equilibria and Systematic Thermodynamics Analysis of Carbon Dioxide Sequestration on South African Coals Using Nonlinear Three-Parameter Models: Sips, Tóth, and Dubinin–Astakhov

2025
Request Book From Autostore and Choose the Collection Method
Overview
Carbon dioxide (CO2) injection into geologic formations has gained global traction, including in South Africa, to mitigate anthropogenic emissions through carbon capture, utilisation, and storage technology. These technological and technical developments require a comprehensive and reliable study of CO2 sorption equilibria under in situ unmineable coal reservoir conditions. This paper presents novel findings on the study of the equilibrium adsorption of CO2 on two South African coals measured at four temperatures between 30 and 60 °C and pressures up to 9.0 MPa using the volumetric technique. Additionally, the sorption mechanism and thermodynamic nature of the process were studied by fitting the experimental data into Langmuir–Freundlich (Sips), Tóth, and Dubinin–Astakhov (DA) isotherm models, and the Clausius–Clapeyron equation. The findings indicate that the sorption process is highly exothermic, as presented by a negative temperature effect, with the maximum working capacity estimated to range between 3.46 and 4.16 mmol/g, which is also rank- and maceral composition-dependent, with high-rank vitrinite-rich coal yielding more sorption capacity than low-rank inertinite-rich coal. The experimental data fit well in Sips and Tóth models, confirming their applicability in describing the CO2 sorption behaviour of the coals under the considered conditions. The isosteric heat of adsorption varied from 7.518 to 37.408 kJ/mol for adsorbate loading ranging from 0.4 to 3.6 mmol/g. Overall, the coals studied demonstrate well-developed sorption properties that characteristically make them viable candidates for CO2 sequestration applications for environmental sustainability.