MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers
Journal Article

Two-Stage Distributed Robust Optimization Scheduling Considering Demand Response and Direct Purchase of Electricity by Large Consumers

2024
Request Book From Autostore and Choose the Collection Method
Overview
The integration of large-scale wind power into power systems has exacerbated the challenges associated with peak load regulation. Concurrently, the ongoing advancement of electricity marketization reforms highlights the need to assess the impact of direct electricity procurement by large consumers on enhancing the flexibility of power systems. In this context, this paper introduces a Distributed Robust Optimal Scheduling (DROS) model, which addresses the uncertainties of wind power generation and direct electricity purchases by large consumers. Firstly, to mitigate the effects of wind power uncertainty on the power system, a first-order Markov chain model with interval characteristics is introduced. This approach effectively captures the temporal and variability aspects of wind power prediction errors. Secondly, building upon the day-ahead scenarios generated by the Markov chain, the model then formulates a data-driven optimization framework that spans from day-ahead to intra-day scheduling. In the day-ahead phase, the model leverages the price elasticity of the demand matrix to guide consumer behavior, with the primary objective of maximizing the total revenue of the wind farm. A robust scheduling strategy is developed, yielding an hourly scheduling plan for the day-ahead phase. This plan dynamically adjusts tariffs in the intra-day phase based on deviations in wind power output, thereby encouraging flexible user responses to the inherent uncertainty in wind power generation. Ultimately, the efficacy of the proposed DROS method is validated through extensive numerical simulations, demonstrating its potential to enhance the robustness and flexibility of power systems in the presence of significant wind power integration and market-driven direct electricity purchases.