MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica
Journal Article

Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica

2021
Request Book From Autostore and Choose the Collection Method
Overview
Plant pathogens resistant to the commercially available fungicides and bactericides even at higher concentrations are the biggest challenge for the farmers to control the losses due to plant diseases. The antibacterial and antifungal potential of nanomaterials makes them a suitable candidate for the control of plant diseases. Thus, the present study reports the phytofabricated zinc oxide nanoparticles (ZnO Np’s) using aqueous plant leaf extract of Terminalia bellerica (Baheda). Characterization of ZnO nanoparticles was done by ultraviolet–visible (UV–Vis) studies, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FT–IR) analysis, and transmission electron microscopy (TEM). The presence of pure hexagonal wurtzite crystalline structure of ZnO nanoparticles was confirmed by XRD analysis. The TEM images revealed the spherical to hexagonal shaped ZnO nanoparticles with sizes ranging from 20 to 30 nm. The stabilization of synthesized ZnO nanoparticles through the interactions of terpenoids, steroids, phenylpropanoids, flavonoids, phenolic acids, and enzymes present in the leaf extract was suggested by FTIR analysis. The mechanism of the formation of ZnO nanoparticles using Terminalia bellerica (Baheda) (Tb-ZnO Np’s) as a bioactive compound is proposed. These phytofabricated ZnO nanoparticles (Tb-ZnO Np’s) have shown significant antifungal potential against Alternaria brassicae the causal agent of Alternaria blight disease/leaf spot disease in Brassica species. The microscopic results confirm the changes in mycelium morphology and reduction in the number of spore germination at 0.2 mg/mL concentration Tb-ZnO Np’s.