MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa
Journal Article

Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa

2020
Request Book From Autostore and Choose the Collection Method
Overview
The long-term deformation and permeability evolution with time are key issues for geo-engineering applications such as radioactive waste disposal. Rock permeability concurrent with deformation is significantly influenced by cracking. This study investigated the creep-permeability evolution behavior of red sandstone specimens containing a single fissure under a confining pressure of 30 MPa. First, the effects of stress ratio (SR) and fissure dip angle on the creep behavior of rock were investigated. The more loading/unloading cyclic numbers, the larger the irrecoverable axial deformation. The instant elastic strains and visco-elastic strains linearly increased with SR for both the intact and fissured specimens, whereas the instant plastic strains showed different results. The visco-plastic strains nonlinearly increased. For fissured and intact specimens, the creep strains and the steady-state creep rates nonlinearly increased as SR increased. The instantaneous strains, instant elastic strains, and visco-elastic strains slightly varied when the fissure dip angle was less than 45° but notably decreased with increasing fissure dip angle beyond 45°. However, the fissure dip angle had no obvious effects on the plastic and creep strains. Damage ( D ) was defined using the ratio of non-elastic strains to the total strain. D increased approximately linearly with SR, but the fissure dip angle had no obvious influences. Subsequently, the long-term strength (LTS) of the red sandstone was determined using two different methods. The LTS first decreased when the fissure dip angle increased from 0 to 45° but increased with increasing dip angle. The triaxial and creep failure modes were mainly shear along anti-wing cracks for the fissured specimens but shear failure occurred for the intact specimen. Moreover, the permeability of the fissured red sandstone was governed by SR and deformation or time. During the multi-step loading/unloading creep process, the permeability first decreased and then had a sudden rise when tertiary creep occurred.