MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Silicic lunar volcanism; testing the crustal melting model
Silicic lunar volcanism; testing the crustal melting model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Silicic lunar volcanism; testing the crustal melting model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Silicic lunar volcanism; testing the crustal melting model
Silicic lunar volcanism; testing the crustal melting model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Silicic lunar volcanism; testing the crustal melting model
Silicic lunar volcanism; testing the crustal melting model
Journal Article

Silicic lunar volcanism; testing the crustal melting model

2016
Request Book From Autostore and Choose the Collection Method
Overview
Lunar silicic rocks were first identified by granitic fragments found in samples brought to Earth by the Apollo missions, followed by the discovery of silicic domes on the lunar surface through remote sensing. Although these silicic lithologies are thought to make up a small portion of the lunar crust, their presence indicates that lunar crustal evolution is more complex than originally thought. Models currently used to describe the formation of silicic lithologies on the Moon include in situ differentiation of a magma, magma differentiation with silicate liquid immiscibility, and partial melting of the crust. This study focuses on testing a crustal melting model through partial melting experiments on compositions representing lithologies spatially associated with the silicic domes. The experiments were guided by the results of modeling melting temperatures and residual melt compositions of possible protoliths for lunar silicic rocks using the thermodynamic modeling software, rhyolite-MELTS. Rhyolite-MELTS simulations predict liquidus temperatures of 950-1040 °C for lunar granites under anhydrous conditions, which guided the temperature range for the experiments. Monzogabbro, alkali gabbronorite, and KREEP basalt were identified as potential protoliths due to their ages, locations on the Moon (i.e., located near observed silicic domes), chemically evolved compositions, and the results from rhyolite-MELTS modeling. Partial melting experiments, using mixtures of reagent grade oxide powders representing bulk rock compositions of these rock types, were carried out at atmospheric pressure over the temperature range of 900-1100 °C. Because all lunar granite samples and remotely sensed domes have an elevated abundance of Th, some of the mixtures were doped with Th to observe its partitioning behavior. Run products show that at temperatures of 1050 and 1100 °C, melts of the three protoliths are not silicic in nature (i.e., they have <63 wt% SiO2). By 1000 °C, melts of both monzogabbro and alkali gabbronorite approach the composition of granite, but are also characterized by immiscible Si-rich and Fe-rich liquids. Furthermore, Th strongly partitions into the Fe-rich, and not the Si-rich glass in all experimental runs. Our work provides important constraints on the mechanism of silicic melt formation on the Moon. The observed high-Th content of lunar granite is difficult to explain by silicate liquid immiscibility, because through this process, Th is not fractionated into the Si-rich phase. Results of our experiments and modeling suggests that silicic lunar rocks could be produced from monzogabbro and alkali gabbronorite protoliths by partial melting at T < 1000 °C. Additionally, we speculate that at higher pressures (P ≥ 0.005 GPa), the observed immiscibility in the partial melting experiments would be suppressed.