MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations
Journal Article

Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations

2021
Request Book From Autostore and Choose the Collection Method
Overview
Soil salinization is an ecological challenge across the world. Particularly in arid and semi-arid regions where evaporation is rapid and rainfall is scarce, both primary soil salinization and secondary salinization due to human activity pose serious concerns. Soil is subject to various human disturbances in Xinjiang in this area. Samples with a depth of 0–10 cm from 90 soils were taken from three areas: a slightly disturbed area (Area A), a moderately disturbed area (Area B), and a severely disturbed area (Area C). In this study, we first calculated the hyperspectral reflectance of five spectra (R, R, 1/R, lgR, 1/lgR, or original, root mean square, reciprocal, logarithm, and reciprocal logarithm, respectively) using different fractional-order differential (FOD) models, then extracted the bands that passed the 0.01 significance level between spectra and total salt content, and finally proposed a partial least squares regression (PLSR) model based on the FOD of the significance level band (SLB). This proposed model (FOD-SLB-PLSR) is compared with the other three PLSR models to predict with precision the total salt content. The other three models are All-PLSR, FOD-All-PLSR, and IOD-SLB-PLSR, which respectively represent PLSR models based on all bands, all fractional-order differential bands, and significance level bands of the integral differential. The simulations show that: (1) The optimal model for predicting total salt content in Area A was the FOD-SLB-PLSR based on a 1.6 order 1/lgR, which provided good predictability of total salt content with a RPD (ratio of the performance to deviation) between 1.8 and 2.0. The optimal model for predicting total salt content in Area B was a FOD-SLB-PLSR based on a 1.7 order 1/R, which showed good predictability for total salt content with RPDs between 2.0 and 2.5. The optimal model for predicting total salt content in Area C was a FOD-SLB-PLSR based on a 1.8 order lgR, which also showed good predictability for total salt content with RPDs between 2.0 and 2.5. (2) Soils subject to various disturbance levels had optimal FOD-SLB-PLSR models located in the higher fractional order between 1.6 and 1.8. This indicates that higher-order FODs have a stronger ability to extract feature data from complex information. (3) The optimal FOD-SLB-PLSR model for each area was superior to the corresponding All-PSLR, FOD-All-PLSR, and IOD-SLB-PLSR models in predicting total salt content. The RPD value for the optimal FOD-SLB-PLSR model in each area compared to the best integral differential model showed an improvement of 9%, 45%, and 22% for Areas A, B, and C, respectively. It further showed that the fractional-order differential model provides superior prediction over the integral differential. (4) The RPD values that provided an optimal FOD-SLB-PLSR model for each area were: Area A (1.9061) < Area B (2.0761) < Area C (2.2892). This indicates that the prediction effect of data processed by fractional-order differential increases with human disturbance increases and results in a higher-precision model.