MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data
Journal Article

A Crown Morphology-Based Approach to Individual Tree Detection in Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR Data

2021
Request Book From Autostore and Choose the Collection Method
Overview
Owing to the complex forest structure and large variation in crown size, individual tree detection in subtropical mixed broadleaf forests in urban scenes is a great challenge. Unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) is a powerful tool for individual tree detection due to its ability to acquire high density point cloud that can reveal three-dimensional crown structure. Tree detection based on a local maximum (LM) filter, which is applied on a canopy height model (CHM) generated from LiDAR data, is a popular method due to its simplicity. However, it is difficult to determine the optimal LM filter window size and prior knowledge is usually needed to estimate the window size. In this paper, a novel tree detection approach based on crown morphology information is proposed. In the approach, LMs are firstly extracted using a LM filter whose window size is determined by the minimum crown size and then the crown morphology is identified based on local Gi* statistics to filter out LMs caused by surface irregularities contained in CHM. The LMs retained in the final results represent treetops. The approach was applied on two test sites characterized by different forest structures using UAV LiDAR data. The sensitivity of the approach to parameter setting was analyzed and rules for parameter setting were proposed. On the first test site characterized by irregular tree distribution and large variation in crown size, the detection rate and F-score derived by using the optimal combination of parameter values were 72.9% and 73.7%, respectively. On the second test site characterized by regular tree distribution and relatively small variation in crown size, the detection rate and F-score were 87.2% and 93.2%, respectively. In comparison with a variable-size window tree detection algorithm, both detection rates and F-score values of the proposed approach were higher.