MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms
Journal Article

A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms

2019
Request Book From Autostore and Choose the Collection Method
Overview
We have developed a method for evaluating the fidelity of the Aerosol Robotic Network (AERONET) retrieval algorithms by mimicking atmospheric extinction and radiance measurements in a laboratory experiment. This enables radiometric retrievals that use the same sampling volumes, relative humidities, and particle size ranges as observed by other in situ instrumentation in the experiment. We use three Cavity Attenuated Phase Shift (CAPS) monitors for extinction and University of Maryland Baltimore County’s (UMBC) three-wavelength Polarized Imaging Nephelometer (PI-Neph) for angular scattering measurements. We subsample the PI-Neph radiance measurements to angles that correspond to AERONET almucantar scans, with simulated solar zenith angles ranging from 50 ∘ to 77 ∘ . These measurements are then used as input to the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm, which retrieves size distributions, complex refractive indices, single-scatter albedos, and bistatic LiDAR ratios for the in situ samples. We obtained retrievals with residuals less than 8% for about 90 samples. Samples were alternately dried or humidified, and size distributions were limited to diameters of less than 1.0 or 2.5 μ m by using a cyclone. The single-scatter albedo at 532 nm for these samples ranged from 0.59 to 1.00 when computed with CAPS extinction and Particle Soot Absorption Photometer (PSAP) absorption measurements. The GRASP retrieval provided single-scatter albedos that are highly correlated with the in situ single-scatter albedos, and the correlation coefficients ranged from 0.916 to 0.976, depending upon the simulated solar zenith angle. The GRASP single-scatter albedos exhibited an average absolute bias of +0.023–0.026 with respect to the extinction and absorption measurements for the entire dataset. We also compared the GRASP size distributions to aerodynamic particle size measurements, using densities and aerodynamic shape factors that produce extinctions consistent with our CAPS measurements. The GRASP effective radii are highly correlated (R = 0.80) and biased under the corrected aerodynamic effective radii by 1.3% (for a simulated solar zenith angle of θ ∘ = 50 ∘ ); the effective variance indicated a correlation of R = 0.51 and a relative bias of 280%. Finally, our apparatus was not capable of measuring backscatter LiDAR ratios, so we measured bistatic LiDAR ratios at a scattering angle of 173 degrees. The GRASP bistatic LiDAR ratios had correlations of 0.71 to 0.86 (depending upon simulated θ ∘ ) with respect to in situ measurements, positive relative biases of 2–10%, and average absolute biases of 1.8–7.9 sr.