MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns
Journal Article

Understanding changes in heat waves, droughts, and compound events in Yangtze River Valley and the corresponding atmospheric circulation patterns

2024
Request Book From Autostore and Choose the Collection Method
Overview
Heat waves, droughts, and compound drought and heat waves (CDHWs) have received extensive attention because of their disastrous impacts on agriculture, ecosystems, human health, and society. Here, we computed the heat wave magnitude index (HWMI), drought magnitude index (DMI), and compound drought and heat wave magnitude index (CDHMI) for Yangtze River Valley (YRV) from July to August during 1961–2022. We compared the large-scale atmospheric circulation characteristics of different extreme events based on these indexes. The results show that the positive center with sink motion in East Asia provides a favorable circulation background for heat wave events. Drought events are mainly affected by the zonal wave train dominated by a significant negative anomaly in Siberia and a high-pressure anomaly upstream, and a anticyclonic water vapor with strong divergence over the Yangtze River basin. During CDHW events, both anomalous systems that affect heat waves and droughts appear and strengthen simultaneously. Specifically, in the middle and upper troposphere, the positive height anomaly center in YRV expands abnormally, and the “+–+” wave train over the northern 50° N region of East Asia becomes more obvious. Therefore, the positive anomaly and water vapor anomaly brought by the two circulation patterns at different latitudes are superimposed over the YRV, leading to severe CDHWs. At the same time, the warm positive eddy center and cold negative eddy center in high latitudes exhibit more stable positive pressure features, which are conducive to the persistent development and strengthening of CDHWs. In addition, the anomalous warm sea surface temperature in western Pacific moderating the favorable circulation patterns may also promote the occurrence of CDHWs in the YRV during the same period.