Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
by
Tran, Thi
, Riera, Sergi
, Kuwabara, Yoshiki
, Diez, Yago
, Tsou, Ching-Ying
, Lopez Caceres, Maximo
, Conciatori, Marco
in
Aerial surveys
/ alpha diversity indices
/ Altitude
/ Bark
/ Biodiversity
/ Cameras
/ Canopies
/ classification
/ Color imagery
/ Data collection
/ Decision making
/ Diversity indices
/ Drone aircraft
/ Ecosystems
/ Environmental monitoring
/ Field study
/ Fieldwork
/ Forests
/ Geographical distribution
/ Height
/ High altitude
/ High temperature
/ Identification and classification
/ Image analysis
/ Image processing
/ Manpower
/ Methods
/ Microclimate
/ Mountain regions
/ Mountainous areas
/ Mountains
/ Plant diversity
/ Plant species
/ Remote sensing
/ RGB images
/ Snow cover
/ Spatial data
/ Species diversity
/ Species richness
/ subalpine vegetation
/ Trees
/ UAV imagery
/ Unmanned aerial vehicles
/ Variability
/ Vegetation
/ vegetation diversity indices
/ Vegetation dynamics
/ Vegetation surveys
2024
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
by
Tran, Thi
, Riera, Sergi
, Kuwabara, Yoshiki
, Diez, Yago
, Tsou, Ching-Ying
, Lopez Caceres, Maximo
, Conciatori, Marco
in
Aerial surveys
/ alpha diversity indices
/ Altitude
/ Bark
/ Biodiversity
/ Cameras
/ Canopies
/ classification
/ Color imagery
/ Data collection
/ Decision making
/ Diversity indices
/ Drone aircraft
/ Ecosystems
/ Environmental monitoring
/ Field study
/ Fieldwork
/ Forests
/ Geographical distribution
/ Height
/ High altitude
/ High temperature
/ Identification and classification
/ Image analysis
/ Image processing
/ Manpower
/ Methods
/ Microclimate
/ Mountain regions
/ Mountainous areas
/ Mountains
/ Plant diversity
/ Plant species
/ Remote sensing
/ RGB images
/ Snow cover
/ Spatial data
/ Species diversity
/ Species richness
/ subalpine vegetation
/ Trees
/ UAV imagery
/ Unmanned aerial vehicles
/ Variability
/ Vegetation
/ vegetation diversity indices
/ Vegetation dynamics
/ Vegetation surveys
2024
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
by
Tran, Thi
, Riera, Sergi
, Kuwabara, Yoshiki
, Diez, Yago
, Tsou, Ching-Ying
, Lopez Caceres, Maximo
, Conciatori, Marco
in
Aerial surveys
/ alpha diversity indices
/ Altitude
/ Bark
/ Biodiversity
/ Cameras
/ Canopies
/ classification
/ Color imagery
/ Data collection
/ Decision making
/ Diversity indices
/ Drone aircraft
/ Ecosystems
/ Environmental monitoring
/ Field study
/ Fieldwork
/ Forests
/ Geographical distribution
/ Height
/ High altitude
/ High temperature
/ Identification and classification
/ Image analysis
/ Image processing
/ Manpower
/ Methods
/ Microclimate
/ Mountain regions
/ Mountainous areas
/ Mountains
/ Plant diversity
/ Plant species
/ Remote sensing
/ RGB images
/ Snow cover
/ Spatial data
/ Species diversity
/ Species richness
/ subalpine vegetation
/ Trees
/ UAV imagery
/ Unmanned aerial vehicles
/ Variability
/ Vegetation
/ vegetation diversity indices
/ Vegetation dynamics
/ Vegetation surveys
2024
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
Journal Article
Using UAV RGB Images for Assessing Tree Species Diversity in Elevation Gradient of Zao Mountains
2024
Request Book From Autostore
and Choose the Collection Method
Overview
Vegetation biodiversity in mountainous regions is controlled by altitudinal gradients and their corresponding microclimate. Higher temperatures, shorter snow cover periods, and high variability in the precipitation regime might lead to changes in vegetation distribution in mountains all over the world. In this study, we evaluate vegetation distribution along an altitudinal gradient (1334–1667 m.a.s.l.) in the Zao Mountains, northeastern Japan, by means of alpha diversity indices, including species richness, the Shannon index, and the Simpson index. In order to assess vegetation species and their characteristics along the mountain slope selected, fourteen 50 m × 50 m plots were selected at different altitudes and scanned with RGB cameras attached to Unmanned Aerial Vehicles (UAVs). Image analysis revealed the presence of 12 dominant tree and shrub species of which the number of individuals and heights were validated with fieldwork ground truth data. The results showed a significant variability in species richness along the altitudinal gradient. Species richness ranged from 7 to 11 out of a total of 12 species. Notably, species such as Fagus crenata, despite their low individual numbers, dominated the canopy area. In contrast, shrub species like Quercus crispula and Acer tschonoskii had high individual numbers but covered smaller canopy areas. Tree height correlated well with canopy areas, both representing tree size, which has a strong relationship with species diversity indices. Species such as F. crenata, Q. crispula, Cornus controversa, and others have an established range of altitudinal distribution. At high altitudes (1524–1653 m), the average shrubs’ height is less than 4 m, and the presence of Abies mariesii is negligible because of high mortality rates caused by a severe bark beetle attack. These results highlight the complex interactions between species abundance, canopy area, and altitude, providing valuable insights into vegetation distribution in mountainous regions. However, species diversity indices vary slightly and show some unusually low values without a clear pattern. Overall, these indices are higher at lower altitudes, peak at mid-elevations, and decrease at higher elevations in the study area. Vegetation diversity indices did not show a clear downward trend with altitude but depicted a vegetation composition at different altitudes as controlled by their surrounding environment. Finally, UAVs showed their significant potential for conducting large-scale vegetation surveys reliably and in a short time, with low costs and low manpower.
This website uses cookies to ensure you get the best experience on our website.