MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bootstrap Model Selection
Bootstrap Model Selection
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bootstrap Model Selection
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bootstrap Model Selection
Bootstrap Model Selection

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bootstrap Model Selection
Journal Article

Bootstrap Model Selection

1996
Request Book From Autostore and Choose the Collection Method
Overview
In a regression problem, typically there are p explanatory variables possibly related to a response variable, and we wish to select a subset of the p explanatory variables to fit a model between these variables and the response. A bootstrap variable/model selection procedure is to select the subset of variables by minimizing bootstrap estimates of the prediction error, where the bootstrap estimates are constructed based on a data set of size n. Although the bootstrap estimates have good properties, this bootstrap selection procedure is inconsistent in the sense that the probability of selecting the optimal subset of variables does not converge to 1 as n → ∞. This inconsistency can be rectified by modifying the sampling method used in drawing bootstrap observations. For bootstrapping pairs (response, explanatory variable), it is found that instead of drawing n bootstrap observations (a customary bootstrap sampling plan), much less bootstrap observations should be sampled: The bootstrap selection procedure becomes consistent if we draw m bootstrap observations with m → ∞ and m/n → 0. For bootstrapping residuals, we modify the bootstrap sampling procedure by increasing the variability among the bootstrap observations. The consistency of the modified bootstrap selection procedures is established in various situations, including linear models, nonlinear models, generalized linear models, and autoregressive time series. The choice of the bootstrap sample size m and some computational issues are also discussed. Some empirical results are presented.