MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments
Journal Article

A Quasi Time-Domain Method for Fatigue Analysis of Reactor Pressure Vessels in Floating Nuclear Power Plants in Marine Environments

2024
Request Book From Autostore and Choose the Collection Method
Overview
The reactor pressure vessel (RPV) in onshore nuclear power plants is typically analysed for fatigue life by considering the temperature, internal pressure, and seismic effects using a simplified time-domain fatigue analysis. In contrast, the frequency-domain fatigue analysis method is commonly employed to assess the fatigue life of ship structures. The RPV of a floating nuclear power plant (FNPP) is subjected to a combination of temperature, internal pressure, and wave loads in the marine environment. Consequently, it is essential to effectively integrate the frequency-domain fatigue analysis method used for hull structures with the time-domain fatigue analysis method for RPVs in FNPPs or, alternatively, to develop a suitable method that effectively accounts for the temperature, internal pressure, and wave loads. In this study, a quasi-time-domain method is proposed for the fatigue analysis of RPVs in FNPPs. In this method, secondary components of marine environmental loads are filtered out using principal component analysis. Subsequently, the stress spectrum induced by waves is transformed into a stress time history. Fatigue stress under the combined influence of temperature, internal pressure, and wave loads is then obtained through a stress component superposition method. Finally, the accuracy of the quasi-time-domain method was validated through three numerical examples. The results indicate that the calculated values obtained by the quasi-time-domain method are slightly higher than those obtained by the traditional time-domain method, with a maximum deviation of no more than 24%. Additionally, the computation time of the quasi-time-domain method is reduced by 98.67% compared to the traditional time-domain method.