MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MoS2 as a long-life host material for potassium ion intercalation
MoS2 as a long-life host material for potassium ion intercalation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MoS2 as a long-life host material for potassium ion intercalation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MoS2 as a long-life host material for potassium ion intercalation
MoS2 as a long-life host material for potassium ion intercalation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MoS2 as a long-life host material for potassium ion intercalation
MoS2 as a long-life host material for potassium ion intercalation
Journal Article

MoS2 as a long-life host material for potassium ion intercalation

2017
Request Book From Autostore and Choose the Collection Method
Overview
Electrochemical potassium ion intercalation into two-dimensional layered MoS2 was studied for the first time for potential applications in the anode in potassium-based batteries. X-ray diffraction analysis indicated that an intercalated potassium compound, hexagonal K0.4MoS2, formed during the intercalation process. Despite the size of K^+, MoS2 was a long-life host for repetitive potassium ion intercalation and de-intercalation with a capacity retention of 97.5% after 200 cycles. The diffusion coefficient of the K^+ ions in KxMoS2 was calculated based on the Randles-Sevcik equation. A higher K^+ intercalation ratio not only encountered a much slower K^+ diffusion rate in MoS2, but also induced MoS2 reduction. This study shows that metal dichalcogenides are promising potassium anode materials for emerging K-ion, K-O2, and K-S batteries.