MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas
Journal Article

A novel analytical model of MGMT methylation pyrosequencing offers improved predictive performance in patients with gliomas

2019
Request Book From Autostore and Choose the Collection Method
Overview
The methylation status of the promoter of MGMT gene is a crucial factor influencing clinical decision-making in patients with gliomas. MGMT pyrosequencing results are often dichotomized by a cut-off value based on an average of several tested CpGs. However, this method frequently results in a “gray zone”, representing a dilemma for physicians. We therefore propose a novel analytical model for MGMT methylation pyrosequencing. MGMT CpG heterogeneity was investigated in 213 glioma patients in two tested cohorts: cohort A in which CpGs 75–82 were tested and cohort B in which CpGs 72–78 were tested. The predictive performances of the novel and traditional averaging models were compared in 135 patients who received temozolomide using receiver operating characteristic curves and Kaplan–Meier curves, and in patients stratified according to isocitrate dehydrogenase gene mutation status. The results were validated in an independent cohort of 65 consecutive patients with high-grade gliomas from the Chinese Glioma Genome Atlas database. Heterogeneity of MGMT promoter CpG methylation level was observed in most gliomas. The optimal cut-off value for each individual CpG varied from 4–16%. The current analysis defined MGMT promoter methylation as occurring when at least three CpGs exceeded their respective cut-off values. This novel analysis could accurately predict the prognosis of patients in the methylation “gray zone” according to the standard averaging method, and improved the area under the curves from 0.67, 0.76, and 0.67 to 0.70, 0.84, and 0.72 in cohorts A, B, and the validation cohort, respectively, demonstrating superiority of this analytical method in all three cohorts. Furthermore, the advantages of the novel analysis were retained regardless of WHO grade and isocitrate dehydrogenase gene mutation status. In conclusion, this novel analytical model offers an improved clinical predictive performance for MGMT pyrosequencing results and is suitable for clinical use in patients with gliomas.