MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The challenge of modeling niches and distributions for data-poor species
The challenge of modeling niches and distributions for data-poor species
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The challenge of modeling niches and distributions for data-poor species
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The challenge of modeling niches and distributions for data-poor species
The challenge of modeling niches and distributions for data-poor species

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The challenge of modeling niches and distributions for data-poor species
The challenge of modeling niches and distributions for data-poor species
Journal Article

The challenge of modeling niches and distributions for data-poor species

2018
Request Book From Autostore and Choose the Collection Method
Overview
Models of species ecological niches and geographic distributions now represent a widely used tool in ecology, evolution, and biogeography. However, the very common situation of species with few available occurrence localities presents major challenges for such modeling techniques, in particular regarding model complexity and evaluation. Here, we summarize the state of the field regarding these issues and provide a worked example using the technique Maxent for a small mammal endemic to Madagascar (the nesomyine rodent Eliurus majori). Two relevant model-selection approaches exist in the literature (information criteria, specifically AICc; and performance predicting withheld data, via a jackknife), but AICc is not strictly applicable to machine-learning algorithms like Maxent. We compare models chosen under each selection approach with those corresponding to Maxent default settings, both with and without spatial filtering of occurrence records to reduce the effects of sampling bias. Both selection approaches chose simpler models than those made using default settings. Furthermore, the approaches converged on a similar answer when sampling bias was taken into account, but differed markedly with the unfiltered occurrence data. Specifically, for that dataset, the models selected by AICc had substantially fewer parameters than those identified by performance on withheld data. Based on our knowledge of the study species, models chosen under both AICc and withheld-data-selection showed higher ecological plausibility when combined with spatial filtering. The results for this species intimate that AICc may consistently select models with fewer parameters and be more robust to sampling bias. To test these hypotheses and reach general conclusions, comprehensive research should be undertaken with a wide variety of real and simulated species. Meanwhile, we recommend that researchers assess the critical yet underappreciated issue of model complexity both via information criteria and performance on withheld data, comparing the results between the two approaches and taking into account ecological plausibility.