MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Targeting Plasmodium PI(4)K to eliminate malaria
Targeting Plasmodium PI(4)K to eliminate malaria
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Targeting Plasmodium PI(4)K to eliminate malaria
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Targeting Plasmodium PI(4)K to eliminate malaria
Targeting Plasmodium PI(4)K to eliminate malaria

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Targeting Plasmodium PI(4)K to eliminate malaria
Targeting Plasmodium PI(4)K to eliminate malaria
Journal Article

Targeting Plasmodium PI(4)K to eliminate malaria

2013
Request Book From Autostore and Choose the Collection Method
Overview
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax , and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi . We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria. The lipid kinase phosphatidylinositol-4-OH kinase (PI(4)K) is identified as a target of the imidazopyrazines, a new antimalarial compound class that can inhibit several Plasmodium species at each stage of the parasite life cycle; the imidazopyrazines exert their inhibitory action by interacting with the ATP-binding pocket of PI(4)K. A multifunction target for antimalarials To eliminate malaria completely it is necessary to cure an individual of all stages in the malaria parasite's life cycle including the symptomatic blood-stage infection and the preceding liver-stage infection (to prevent relapse) and also to block transmission to mosquitoes. Here Elizabeth Winzeler and colleagues identify phosphatidylinositol-4-OH kinase (PI(4)K) as a potential drug target that is essential to fatty acid metabolism in all stages of the Plasmodium parasite. The authors show that a family of compounds with an imidazopyrazine core, distinct from known antimalarials, inhibits PI(4)K and also inhibits the development of multiple Plasmodium species at each stage of the life cycle. Their analyses reveal that the imidazopyrazines interact with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4 phosphate and interfering with cell division.

MBRLCatalogueRelatedBooks