MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment
Journal Article

Trait-dependent importance of intraspecific variation relative to species turnover in determining community functional composition following nutrient enrichment

2024
Request Book From Autostore and Choose the Collection Method
Overview
Community weighted mean trait, i.e., functional composition, has been extensively used for upscaling of individual traits to the community functional attributes and ecosystem functioning in recent years. Yet, the importance of intraspecific trait variation relative to species turnover in determining changes in CWM still remains unclear, especially under nutrient enrichment scenarios. In this study, we conducted a global data synthesis analysis and three nutrient addition experiments in two sites of alpine grassland to reveal the extent to which species turnover and ITV contribute to shift in CWM in response to nutrient enrichment. The results consistently show that the importance of ITV relative to species turnover in regulating CWM in response to nutrient enrichment strongly depends on trait attributes rather than on environmental factors (fertilization type, climatic factors, soil properties, and light transmittance). For whole plant traits (height) and leaf morphological traits, species turnover is generally more important than ITV in determining CWM following most treatments of nutrient addition. However, for leaf nutrient traits, ITV outweighed species turnover in determining shifts in CWM in response to almost all treatments of nutrient addition, regardless of types and gradients of the nutrient addition. Thus, our study not only provides robust evidence for trait-dependent importance of ITV in mediating community functional composition, but also highlights the need to consider the nature of functional traits in linking ITV to community assembly and ecosystem functioning under global nutrient enrichment scenarios.