MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images
Journal Article

Near-Surface Soil Moisture Characterization in Mississippi’s Highway Slopes Using Machine Learning Methods and UAV-Captured Infrared and Optical Images

2023
Request Book From Autostore and Choose the Collection Method
Overview
Near-surface soil moisture content variation is a major factor in the frequent shallow slope failures observed on Mississippi’s highway slopes built on expansive clay. Soil moisture content variation is monitored generally through borehole sensors in highway embankments and slopes. This point monitoring method lacks spatial resolution, and the sensors are susceptible to premature failure due to wear and tear. In contrast, Unmanned/Uncrewed Aerial Vehicles (UAVs) have higher spatial and temporal resolutions that enable more efficient monitoring of site conditions, including soil moisture variation. The current study focused on developing two methods to predict soil moisture content (θ) using UAV-captured optical and thermal combined with machine learning and statistical modeling. The first method used Red, Green, and Blue (RGB) color values from UAV-captured optical images to predict θ. Support Vector Machine for Regression (SVR), Extreme Gradient Boosting (XGB), and Multiple Linear Regression (MLR) models were trained and evaluated for predicting θ from RGB values. The XGB model and MLR model outperformed the SVR model in predicting soil moisture content from RGB values. The R2 values for the XGB and MLR models were >0.9 for predicting soil moisture when compared to SVR (R2 = 0.25). The Root Mean Square Error (RMSE) for XGB, SVR, and MLR were 0.009, 0.025, and 0.01, respectively, for the test dataset, affirming that XGB was the best-performing model among the three models evaluated, followed by MLR and SVR. The better-performing XGB and MLR models were further validated by predicting soil moisture using unseen input data, and they provided good prediction results. The second method used Diurnal Land Surface Temperature variation (ΔLST) from UAV-captured Thermal Infrared (TIR) images to predict θ. TIR images of vegetation-covered areas and bare ground areas of the highway embankment side slopes were processed to extract ΔLST amplitudes. The underlying relationship between soil surface thermal inertia and moisture content variation was utilized to develop a predictive model. The resulting single-parameter power curve fit model accurately predicted soil moisture from ΔLST, especially in vegetation-covered areas. The power curve fit model was further validated on previously unseen TIR, and it predicted θ with an accuracy of RMSE = 0.0273, indicating good prediction performance. The study was conducted on a field scale and not in a controlled environment, which aids in the generalizability of the developed predictive models.