MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
An incremental adversarial training method enables timeliness and rapid new knowledge acquisition
Journal Article

An incremental adversarial training method enables timeliness and rapid new knowledge acquisition

2025
Request Book From Autostore and Choose the Collection Method
Overview
Adversarial training is an effective defense method for deep models against adversarial attacks. However, current adversarial training methods require retraining the entire neural network, which consumes a significant amount of computational resources, thereby affecting the timeliness of deep models and further hindering the rapid learning process of new knowledge. In response to the above problems, this article proposes an incremental adversarial training method (IncAT) and applies it to the field of brain computer interfaces (BCI). Within this method, we first propose a deep model called Neural Hybrid Assembly Network (NHANet) and then train it. Then, based on the original samples and the trained deep model, calculate the Fisher information matrix to evaluate the importance of deep neural network parameters on the original samples. Finally, when calculating the loss of adversarial samples and real labels, an Elastic Weight Consolidation (EWC) loss is added to limit the variation of important weights and bias parameters in the Neural Hybrid Assembly Network (NHANet). The above incremental adversarial training method was applied to the publicly available epilepsy brain computer interface dataset at the University of Bonn. The experimental results showed that when facing three different attack algorithms, including fast gradient sign method (FGSM), projected gradient descent (PGD) and basic iterative method (BIM), the method proposed in this paper achieved robust accuracies of 95.33%, 94.67%, and 93.60%, respectively, without affecting the accuracy of clean samples, which is 5.06%, 4.67%, and 2.67% higher than traditional training methods respectively, thus fully verifying the generalization and effectiveness of the method.