MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
Journal Article

The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab

2025
Request Book From Autostore and Choose the Collection Method
Overview
This study investigates the distribution characteristics of residual ferrite in 304L austenitic stainless steel continuous casting slab and the impact of heat treatment processes on its content. Through optical microscopy (OM), thermodynamic calculation software (Thermo–Calc) and heat treatment experiments, it is found that the residual ferrite content along the thickness direction at the width center of the slab exhibits an “M”-shaped distribution—lowest at the edges (approximately 3%) and highest near the center (approximately 13%). Within the triangular zone of the slab, the residual ferrite content varies between 1.8% and 12.2%, with its average along the thickness direction also showing an “M”-shaped distribution; along the width direction, the average residual ferrite content is lower at the edge positions, while within the internal triangular zone, it ranges between 8% and 10%. The ferrite morphology changes significantly across solidification zones: elongated in the surface fine-grain zone, lath-like and skeletal in the columnar grain zone and network-like in the central equiaxed grain zone. Thermodynamic calculations indicate that the solidification mode of the 304L continuous casting slab follows the FA mode. Heat treatment experiments conducted across the entire slab thickness demonstrate effective reduction in residual ferrite content; the optimal reduction is achieved at 1250 °C with a 48 min hold followed by air cooling while preserving the original “M”-shaped distribution characteristic after treatment. Increasing the heat treatment temperature, prolonging the holding time and reducing the cooling rate all contribute to reducing residual ferrite content.