MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease
Journal Article

Sex‐specific accelerated decay in time/activity‐dependent plasticity and associative memory in an animal model of Alzheimer's disease

2021
Request Book From Autostore and Choose the Collection Method
Overview
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long‐term plasticity in a sex‐specific manner. Long‐term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing‐dependent plasticity (pSTDP) show a faster decay in AD females compared with age‐matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females. Sex‐specific study of synaptic plasticity and memory reveals female APP/PS1 mice carry a higher amyloid plaque burden and enhanced Iba‐1‐positive microglial activation compared with male APP/PS1. In addition, synaptic plasticity and associative memory impairments are also more prominent in females than in males.