MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
Journal Article

Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model

2022
Request Book From Autostore and Choose the Collection Method
Overview
The anomaly detection for communication networks is significant for improve the quality of communication services and network reliability. However, traditional communication monitoring methods lack proactive monitoring and real-time alerts and the prediction effect of a single machine learning model on communication data containing multiple features is not ideal. To solve the problem, A prediction-then-detection anomaly detection method was proposed, and quantitative assessment of network anomalies was developed. Specifically, anomaly-free data was obtained by eliminating outliers, and the long short-term memory (LSTM) and autoregressive integral moving average (ARIMA) were combined via residual weighting to predict the future state of the key performance indicators (KPI) without outliers. Anomalies were identified using the error comparison between the prediction and actual values, and the network condition was quantified using the scoring method. It is observed that the proposed LSTM-ARIMA hybrid model has better prediction effect, which can well represent the performance of KPIs of the future state, and the prediction-then-detection anomaly detection method has excellent performance on both precision and recall.

MBRLCatalogueRelatedBooks